Hexagonal optical structures in photorefractive crystals with a feedback mirror
نویسندگان
چکیده
A nonlinear theory is presented for the formation of hexagonal optical structures in a photorefractive medium equipped with a feedback mirror. Oppositely directed beams in photorefractive crystals are unstable against the excitation of sideband waves. It is shown here that as this instability evolves to its nonlinear stage, the three-wave interaction between weak sideband beams does not stabilize it, but rather leads to explosive growth of the amplitudes of beams whose transverse wave vectors form angles that are multiples of p/3. As a result, sideband beams at these angles are found to be correlated. A range of parameters is found in which four-wave interactions saturate the explosive instability, which explains the appearance of stable hexagons in the experiment. Outside this region, nonlinearities of higher order saturate the explosive instability, and the process of hexagon generation must be studied numerically. Matrix elements are obtained for the threeand four-wave interactions as functions of the distance to the feedback mirror, and an equation for the time evolution of the sideband wave amplitudes is derived that describes the hexagon generation. A comparison is made with experimental results for the photorefractive crystals KNbO3 and BaTiO3. © 1998 American Institute of Physics. @S1063-7761~98!02903-5#
منابع مشابه
Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals
In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...
متن کاملPropagation of Incoherently Coupled Soliton Pairs in Photorefractive Crystals and their Self-Deflection
Propagation of incoherently soliton pairs in photorefractive crystals under steady-state conditions is studied. These soliton states can be generated when the two mutually incoherent optical beams with the same polarization and wavelength incident on the biased photorefractive crystal. Such soliton pairs can exist in bright-bright, dark-dark, gray-gray as well as in bright-dark types. In this p...
متن کاملSelf-organization and Fourier selection of optical patterns in a nonlinear photorefractive feedback system
The formation of patterns in two transverse dimensions in photorefractive two-wave mixing with a single feedback mirror is investigated theoretically. We perform numerical simulations of the full ~311!-dimensional nonlinear model equations, displaying the breakup of the unstable annulus of active modes into hexagonal spots. Analytically we derive amplitude equations of the Landau type for patte...
متن کاملDesign and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملLow Temperature Hydrothermal Synthesis and Characterization and Optical Properties of Sr5Nb4O15 – Nb2O5 Nanocomposite
Sr5Nb4O15 – Nb2O5 nanocomposites were synthesized in 2 and 4 M KOH aqueous solutions, via a non-stoichiometric 1:2 Sr:Nb molar ratio hydrothermal method at 160°C for 48 h (S1 and S2, respectively). Sr(NO3)2 and Nb2O5 were used as raw materials. The synthesized nanomaterials were characterized by powder X-Ray diffraction (PXRD) technique. It was found that Sr5Nb4O15 has been crystallized in hexa...
متن کامل